Parsing Techniqgues
for
Lexicalized
Context-Free Grammars

Summary

e Part I: Lexicalized Context-Free Grammars
— motivations and definition
— relation with other formalisms

e Part Il: standard parsing
— TD techniques
— BU techniques

e Part Ill: novel algorithms
— BU enhancec
— TD enhanced

Lexicalized grammars

e each rule specialized for one or more
lexical items

« advantages over non-lexicalized
formalisms:

— express that are
sensitive to lexical words

— control

Syntactic preferences

e adjuncts
Workers | dumped sacks | into a bin
*Workers dumped | sacks into a bin

 N-N compound
hydrogen ion | exchange
*hydrogen | ion exchange

Word selection

* |exical
Nora convened the meeting
?Nora convened the party

e semantics
Peggy solved two puzzles
?Peggy solved two goats

« world knowledge
Mary shelved some books
?Mary shelved some cooks

Lexicalized CFG

Motivations :

e study computational properties common
to generative formalisms used In
state-of-the-art real-world parsers

e develop parsing algorithm that can be
directly applied to these formalisms

Lexicalized CFG

VP[dump][sack]
VP[dump][sack] PP[into][bin]
V[dump] NP[sack] P[into] NP[bin]
|
N[sack] Det|[a] N[bin]

dumped sacks into a bin

Lexicalized CFG

Context-free grammars with :

— dumped, sacks, into, ...
— NP, VP, ...

— NP[sack], VP[du.mp] [sack], ...

Lexicalized CFG

Delexicalized nonterminals encode :

e word sense
N, V, ...
e grammatical features
number, tense, ...
e structural information
bar level, subcategorization state, ...

e other constraints
distribution, contextual features, ...

Lexicalized CFG

e productions have two forms :
— V[dump] — dumped
— VP[dump][sack]
VP[dump][sack] PP[into][bin]

e |lexical elements In lhs inherited from rhs

Lexicalized CFG

e production Is
occurrences of IeX|cal elements In rhs

— NP[bin] — Det[a] N[bin]
IS 2-lexical

— VP[dump][sack]
VP[dump][sack] PP[into][bin]
IS 4-lexical

LCFG at work

o 2-lexical CFG
— Alshawi 1996 : Head Automata
— Eisner 1996 . Dependency Grammars

— Charniak 1997 . CFG
— Collins 1997 . generative model

LCFG at work

Probabillistic LCFG & Is
probabllistic grammar Iff

e 1-2-1 mapping between derivations
e each direction is a homomorphism

 derivation probabilities are preserved

to

LCFG at work

From Charniak 1997 to 2-lex CFG :

NP>[profits]

T T

NNP[profits] ADJNP[corporate]

Pr, (corporate | ADJ, NP, profits)
Pr, (profits | N, NP, profits)

Pr, (| NP, S, profits)

LCFG at work

From Collins 1997 (Model #2) to 2-lex CFG :

(VPS, {}, A ® A, A, ® A) [bought]
/\

(N, A) [IBM] (VPS, {NP-C}, A .., A) [bought]

Pr.. (NP, IBM | VP, S, bought, A, {NP-C})

LCFG at work

Major Limitation :
Cannot capture relations involving
lexical items actual constituent
(cfr. history based models)

NP[dl][d(><
P % cannot look at d,
NP[d,] PP[d,][d,] when computing

vid,] /\ /\ PP attachment
AN | |
dO dl dZ

LCFG at work

 |exicalized context-free parsers that
are not LCFG :

— Magerman 1995 . Shift-Reduce+
— Ratnaparkhi 1997 . Shift-Reduce+
— Chelba & Jelinek 1998 . Shift-Reduce+

— Hermjakob & Mooney 1997 : LR

Standard Parsing

e standard parsing algorithms
(CKY, Earley, LC, ...) run on LCFG In time

ol x 1w ?)

o for 2-lex CFG (simplest case) | & | grows
with | 4] x | 142 !
Goal :

Get rid of | /| factors

Standard Parsing: TD

Result (to be refined) :

Algorithms satisfying the
are “unlikely” to run on LCFG In
time independent of

Correct-prefix property

Earley, Left-Corner, GLR, ... :

i

left-to-right reading position

On-line parsing

No grammar precompilation (Earley) -

Output

Parser

Standard Parsing: TD

Result :
On-line parsers with correct-prefix property
cannot run in time O ((| 5], |])),

for any function f

Off-line parsing

Grammar is precompiled (Left-Corner, LR) :

Output
Parser P

C(G)

PreComp

Standard Parsing: TD

Fact :
We can simulate a nondeterministic

FA M/ on w intime O(|[V]| x |w])

Conjecture :
Fix a polynomial p.
We cannot simulate // on w In time
p(||) unless we spend exponential
time In precompiling

Standard Parsing: TD

Assume our conjecture holds true

Result :
Off-line parsers with correct-prefix property
cannot run in time O (p(| /51, w7])),

for any polynomial p, unless we spend
exponential time In precompiling

Standard Parsing:. BU

Common practice In lexicalized grammar
parsing

 select productions that are lexically
grounded In

o parse BU with selected subset of

Problem :

Algorithm removes | /| factors but
iIntroduces new |1/ | factors !!

Standard Parsing: BU

AL Time charged :
T . _
B] cl] * i k] ?
/\ ' /\ "ABC 3
| \ AN e d. d 2
i K j v

Running time is O (| /5|2 x |w]°) !

Standard BU : Exhaustive

100000

A BU naive

Standard BU : Pruning

A BU naive

novel algorithms

BU enhanced
Result :

Parsing with 2-lex CFG In time
O(ILP < w]*)

Remark :
Result transfers to models in Alshawi 1996,
Eisner 1996, Charniak 1997, Collins 1997

Remark :
Technigue extends to improve parsing of
Lexicalized-Tree Adjoining Grammars

Algorithm #1

Basic step in naive BU :

Ald,]
/\
B[d,] Cld,]
i d, k d,]

ldea:
Indices d, and j can be processed
independently

e Step 2

Algorithm #1

Ald,] Ald,]

Wz] cta;
N :
] | I

i><k d, i K d,

Ald,] Ald,]

BU enhanced

Upper bound provided by Algorithm #1
o(w|*)

Goal :
Can we godownto O(|w|3) ?

Spine

The of a parse tree is the path from the
root to the root’s head

AdvP[week]
NP[IBM] last week
IBM NP[LOtUS]

AN

Lotus

Spine projection

The is the yield of the sub-tree
composed by the spine and all its sibling nodes

I

last week

IBM

AN

Lotus

Split Grammars

Split spine projections at head :

A AN

??

Problem:
how much information do we need to store in
order to construct new grammatical spine
projections from splits ?

Split Grammars

Fact :
Set of spine projections Is a linear context-
free language

Definition :
2-lex CFG Is If set of spine projections
IS a regular language

Remark :
For split grammars, we can recombine
splits using finite information

Split Grammars

S[d] Non-split grammar :
AdvP[a] /Sl[dl] e unbounded # of
S[d] AdvP[b] between left and
prd right dependents
AdvP[a] S,[d] Of head
\

Sid] AdvP[b] e |inguistically
unattested and
unlikely

Split Grammars

°ld] Split grammar :
advplal ~s{d finite # of
S[d] AdvP[b] between left and

right dependents
of lexical head

Split Grammars

Precompile grammar such that splits are
derived separately

S[buy] S[buy]
/
S[buy] AdvP[week] NP[IBM] [buy]
/ \
NP[IBM] VP[buy] [buy] AdvP[week]
V[buy] NP[Lotus] [buy] NP[Lotus]
bought bought

[buy] is a

Split Grammars

. max # of states per s

: max # of split symbo
automaton (g < 1)

nine automaton

S per spine

. # of delexicalized nonterminals
thare are maximal projections

BU enhanced

Result :

Parsing with split 2-lexical CFG In time
O(rcg?m=|wl?)

Remark:
Models in Alshawi 1996, Charniak 1997
and Collins 1997 are not split

B[d]

Algorithm #2

ldea :

/\ e recognize left and right
. splits separately

e collect head
dependents one
B[d] split at a time

Algorithm #2

NP[IBM] bought NP[Lotus] AdvP[week]

Algorithm #2

e Step 1

r
Bld,] >< B{d] /
\/ N K
e

e Step 2 '

2 "2
o
S, 32
: i d,

Algorithm #2 . Exhaustive

100000

A BU split
O BU naive

D> > (IO

Algorithm #2 : Pruning

O BU naive
A BU split

TD enhanced

Goal :

Introduce TD prediction for 2-lexical
CFG parsing, without | /-] factors

Remark :
Must relax left-to-right parsing
(because of previous results)

TD enhanced

Result :
TD parsing with 2-lex CFG In time

O(CILP < [w]*)

Open :
O (| |?) extension to split grammars

TD enhanced

Strongest version of correct-prefix property

reading position

Data Structures

Prods with Ihs A[d] : Trie for A[d] :

* Ald] — X,[d;] X;[d,] d, d,

* Ald] — Y,[d3] Y,[d,] A

+ ALd] > Z,[dy] Z,[d] / /\

Data Structures

Rightmost subsequence recognition
by precompiling input w into a
deterministic FA :

Algorithm #3

ltem representation :

\ * I,] Indicate extension
Al S of A[d] partial analysis

\ \
\ \ \ [] [] []
/ RN e indicates rightmost
\
_____ YN possible position for

j completion of A[d]
analysis

Algorithm #3 .

Prediction

e Step 1:
find rightmost
subsequence
before for some
A[d,] production

e Step 2:
make Earley
prediction

Conclusions

o standard parsing technigues are not
suitable for processing lexicalized
grammars

* novel algorithms have been introduced
using enhanced dynamic programming

e work to be done :
extension to history-based models

